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The interpolation of one-electron energy band eigenralues by way of an interpolating 
function expanded as a linear sum of star functions with expansion oefticients determined via 
a spline-like variational scheme is described. We discuss the practical aspects of such a scheme 
(first, set up by Shankland) and establish that it is a viable one; we then observe that it can 
serve as the basis of a very useful integration scheme. The viability is established through a 
discussion of the choice of the interpolating function and the associated problems of point set 
selection and truncation of the expansion. The proposed integration scheme arises from the 
crucial observations that the interpolation formalism can be described in terms of a transfer 
matrix which operates on the data to yield the expansion coefhcients; this matrix depends on 
the choice of the variational, the point set, and the truncation but not on the data. This allows 
one to produce a very powerful integration scheme which is applicable to a wide class of 
problems. !? 1956 Academic Press, Inc. 

Although linearized energy band methods can rapidly determine one-electron 
energy eigenvalues throughout the Brillouin zone, some problems require such a 
dense sampling of k-points that the concomitant cost is prohibitive. Thus, a reliable 
interpolation scheme that converts the ab initio results obtained on a coarse k- 
space grid over to a tabulation on a fine grid is still a valuable software tool in the 
calculation of densities of states and related quantities. The earliest such scheme 
employed local polynomial fitting; this was subsequently improved with the use of 
spline concepts. This scheme is still used as the final step in integration methods, 
e.g., in the tetrahedron-based schemes, a local linear or quadratic interpolation is 
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used. However, such local fittings are cumbersome and often inadequate when 
employed on a global basis (i.e., throughout the Brillouin zone). An alternate set of 
schemes based on a Fourier (plane wave) analysis is global in nature since, in such 
schemes, one attempts to fit a band over the entire zone. The linear combination of 
atomic orbitals (LCAO) [ 11 and the combined interpolation schem (CIS [2] 
can be regarded as elaborate variants of such global Fourier schemes. However, 
both these methods involve nonlinear fitting and diagonalization of matrices; 
consequently, they are less desirable as numerical interpolation schemes and are 
more commonly used as models of the physical system. The most prevalent 
approaches to global Fourier-based interpolation involve least squares fitting, in 
one form or another. 

Fourier function based approaches start from the observation that an energy 
band has the full symmetry of the crystal’s reciprocal space. Thus the star functions 

S,(k) = $ ,: exp i[crR,] * k 
, I 

are a natural expansion set. The sum on CI runs over all n operations of the point 
group of the crystal while R,,, denotes a real-space lattice translation. (The phase 
factors encountered in expanding a real-space function for a crystal with a nonsym- 
morphic space group do not occur in these k-space expansions.) The factor l/n 
forces the normalization of the function to the volume of the Brillouin zone. Note 
that because all the crR, are lattice vectors, arguments of the sines and cosines 
encountered in evaluating S,(k) are multiples of the primitive translations; hence, 
all the star functions at a given k point can be evaluated from a maximum of nine 
sine-cosine evaluations with trigonometric identities providing the remaining infor- 
mation. Assuming ab initio calculated data e(k) at N points, one can perform a 
least squares fit using M star functions 

.A4 

P(k) = 1 a,,L(kL 

,n = 1 

(2) 

where (for stability) M is typically less than 3 of N. If M is chosen too large, or if 
the band has “difficult” structure, the agreement between the tit and the data will 
still be good, but the fit will exhibit wild oscillations in between the N data points; 
this is generally reflected in large variations over the fitting coefficients a,. The 
choice M= N, for example, leads to such instabilities even though the ab initio data 
and the fitted values agree precisely at the N data points. 

What is meant by “difficult” structure? The most difficult structures occur as a 
result of band crossings. Because a band must be defined by energy ordering, the 
crossing of two e(k) curves results in a kink structure and such a structure is always 
a problem for Fourier series analysis as it leads to Gibbs ringing. Removal of such 
crossings by a perturbation such as the spin-orbit interaction can help but, in 
general, the problem does not entirely disappear. Multiple fits can also alleviate the 
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situation but this is a move away from a global fit [3]. [A prime example of a 
recalcitrant band is band six of a transition metal; this band is &like (flat) near the 
center of the zone and plane-wave-like (parabolic) near the zone boundaries with a 
sharp knee (kink) in between.] 

Least squares procedures lead to the fit function passing near (but, in generai, 
not through) the N data points. This inevitably sacrifices some of the precision with 
which these eigenvalues were originally determined. An alternative procedure, first 
proposed by Shankland [4], uses more functions than points (M> N). The fit is 
required to pass through all data points, and the additional freedom in the fit is 
used to suppress oscillations between points. This suppression is accomplished by 
minimising an auxiliary roughness functional with the choice of functional 
motivated by spline analyses. One seeks to minimize the roughness of a fit in much 
the same manner as does a draftsman employing a spline. Shankland defined this 
functional R (for roughness) as 

where the choice of the coefficients C,, C,, and Cz are left to the practitioner. (This 
freedom or indeterminacy in defining R has been a worrisome point to many 
practitioners-the authors included). It is reassuring that the quality of the fit is 
insensitive to the choice-note that, as given, R is defined by the two parameters, 
say CJC, and C1;‘C,.] As discussed by Shankland, the term inv-olving C, serves to 
minimize the roughness (maximize the smoothness) of the interpolating function t;, 
that involving C, minimizes the roughness of the first derivative, and so on. in par- 
ticular, the Co term legislates against the occurrence of large coefficients a,,, of 
opposite sign. a situation noted for the least squares problem. Recall that this is al 
done under the constraint that the interpolating function c pass through all the data 
points e(k,). 

The superfluous C, can be set to unity and the roughness coefficient defined as 

‘21 
R- 1 &,,P(R,,)> 

,,I ~ I (4) 
p(R)-l+C, jR12+C21R/4f .‘.. 

It is useful to reexamine the variational solution of the problem defined in the 
previous paragraph since information can be extracted from the various steps. The 
solution is based on a standard Lagrangian formulation by defining the variational 
qu.antity R* which includes the constraints according to 

R* = R - 2 1 Ai [e(k;) - E(kfi]. (5) 

The factor of 2 is inserted to simplify later expressions. The variation of this quan- 
tity with respect to the A parameter returns the Eqs. (2) with k = kj and P replaced 
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by e. These equations are simply the requirement that the fit pass through the data. 
Variation with respect to the am, 

dR* 
-=2 
aarn C 

a&R,)- f iiS, =o 
i= I 1 (6) 

relates the 1 parameters to the data points e(k,) according to 

e(kj) = $J ffiil,, 
j=j 

nz = 1 

It is instructive to consider the special case p(R) = 1. If a complete set of Fourier 
functions S, were to be used, Hii would be a delta function with argument (k, - k;) 
and the Ai would equal the original data e(ki). Consequently, one expects the actual 
Hji to be fairly local in lkj- kil and 3Li to be close to e(ki). Inclusion of the higher 
terms in p(R) will tend to delocalize Hji because the influence of the short 
wavelength (large m) S, terms will be reduced. We have examined this by plotting 
G,- HZ,/(HiiHii) as a function of the distance between ki and kj. 

The inverse of the matrix H is utilized to solve Eq. (7) for Ai. Equation (6) then 
yields 

a, = f T,,&kj), 
j=l 

T,/= f Sm(k;) ff; ‘/P(Rm). 
i= I 

(8) 

Given the a,,,, one has a solution which generates a representation of the band. 
Note that T does not depend on e(k) but merely on the roughness function, star 
functions used, and choice of sampling points. Thus one has a linear mapping of the 
data into the chosen representation. 

This representation can then be used to develop an interpolation formula for any 
given point in the Brillouin zone. One then obtains 

0) = J$ J(k, kj) e(kj), 

j=l 

J(k, kj) = f S,,(k) Tmj = c Sm(ki) Sm(k) H,‘, 
nt = I mj Pm(RPiZ) 

(9) 

as the desired interpolation formula. Because an interpolation formula is obtained, 
it will be wise to obtain data e(kj) throughout the zone so that extrapolation can be 
avoided; generally, extrapolation performed with an interpolation formula is 
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fraught with risk. This form of interpolation has possibilities for the task of con- 
verting from one grid to another. We mention it for completeness but proceed using 
the expansion formula of Eq. (8). 

One of the virtues of the present scheme is that the coefficients T and J are com- 
pletely defined once one has chosen the lattice, the set of star functions S,, and the 
form of the roughness function R. In choosing the latter, we rely on the general rule 
of thumb that employment of high order terms in a numerical scheme should be 
avoided unless absolutely need. This suggests retaining only the first term in R and 
adding the higher terms only if required. The first term already imposes a con- 
siderable constraint on oscillations in the interpolation function; as we have already 
argued, inclusion of the higher order terms acts to delocalize the inrer- 
polation-normally, this is not a desirable feature. There is only one argument that 
can be made in favor of inclusion of higher order terms and it is a very important 
one. Consider the case where the grid of data points kj is a regular one. Now there 
will exist a real space vector R, such that the star function S,, B will have the 
same value as the star function S, on the grid. One would wish that the algorithm 
would assign a coefficient of zero to this star function--in fact, the present scheme 
yields 

a(,,+,,la,=~(R,,)l~(R,,+ Q) iIO) 

so that the weight is removed from the higher order star function only to the extent 
that the associated roughness exceeds that of the lower order star function. Most 
desirable is that the algorithm would automatically remove such “duplicate” 
functions. Corrective action can be taken by shifting away from a regular grid of 
data points to break the equivalence. In the absence of either of these solutions, the 
coefficients C, ad C, in the expression for R may be used as adjusting knobs for 
damping out oscillations (induced by the presence of the high order star functions). 
If the data grid is reasonably line, any repetition vector R, will be so large that the 
R’ and R4 occurring in the expression for the roughness will lead to considerable 
damping of amtP relative to a,; this will be true even when C! and C, are chosen 
rather small. Tests indicate that the results are fairly insensitive to the actual values 
of C, and C2 so long as they are nonzero. Thus, plots of the spread of H with 
respect to (ki- r;,) show that the width of H increases when C, and C2 are set to 
nonzero; however, this width is fairly insensitive to their actual values. Actually, 
one is more interested in the behavior of H-’ than that of H because it is the 
inverse that occurs in the interpolation equations (Eqs. (8) and (9)). We find that 
the width of this quantity to be far less sensitive to the particular values of C! and 
C, than is H itself. 

The free electron bands can be used as a most informative example. A test data 
base is formed by tabulating the first ten bands for an .fcc crystal on a ti/4a cubic 
mesh. This yields an equally spaced mesh of IV= 85 inequivalent points. It will be 
seen that the mesh could be improved upon but that is not consistent with our pur- 
pose here. Two truncations were used based on /RI. The smaller included all stars 
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FIG. 1. Fit to the free electron bands. This figures demonstrates both the stengths and the break- 
down modes of the method as discussed in the text. Tick marks show the position of the actual data. 

for IRl d 87~ &/a amounting to M= 165 star functions in the expansion set. The 
larger for JR1 d 10~ V 6 a / had M= 306 star functions in the expansion set. Finally, 
to remove a dependence on lattice constant, C, and C, were renormalized by R;= 
and R;” where R, is the nearest neighbor distance. Fits were then performed first 
for C, = C, = 0 and then for varying values between zero and one. These fits were 
then examined by plotting the resultant interpolation, by looking at the size of the 
maximum coefficient, and by looking at the root mean square of the coefficients. 
For the smaller function set, these last two checks revealed very little for all 
variations of the C, and C2. The case C, = C, = 0 graphically showed some 
oscillations between the data points but these rapidly reduced as additional 
smoothing was turned on through either C, or C, or both. In Fig. 1, we show the 
representation of the bands obtained with C, = C, = 1. As is seen, the represen- 
tation of the bottom band is quite good. Between the data points, the represen- 
tation oscillates for the upper band. This is greatly reduced by going to an irregular 
sampling grid but, again, that is not the point of this set of experiments. The free 
electron bands are a very severe test case for this procedure as they exhibit many 
band crossings (cusps) in the Brillouin zone thus driving the Gibbs-ringing-like 
problem. This is precisely why the lowest band is best represented. Some such 
oscillation must unfortunately be tolerated if there is a band crossing. If the point 
sampling is made too line for a given number of functions, the matrix H will 
become singular. This will occur even when only a very few pairs occur with a 
separation too small for the number of star functions. Using the larger set of 
functions (M= 306), we can observe the effect of extending the expansion set. For 
the case C, = C, = 1, the two representations of these bands are indistinguishable. 
Ho\tvetler, when the extra restraints are turned off (C, = C, =O), the situation is 
much worse with the larger number of functions! The maximum size and the r.m.s. 
size of the coefftcients indicate wild oscillations which are seen in the plots (not 
shown) even though the data points are still fit exactly. The larger number of 
functions has generated many more repeating vectors for the regular grid. The 
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choice C, = 0.1 and C, = 0 already drops the maximum and r.m.s. coefficients to 
values very close to their values for C, = 1, C, = 1. Any further variation for 
C, 2 0.5 is really indistinguishable by all three indices. It is pleasing to see this very 
clear demonstration of the correctness of our interpretation of the significance of 
the coefficients C, and C2. 

As a second more realistic example can be useful, the method has also been 
employed to represent the bands of the low symmetry material x-uranium. in this 
case, determination of the ab initio band calculation points is expensive so it is 
desirable to keep their number to a minimum. The data (band calculations) were 
obtained on a fairly random set so the question of the effects of a regular mesh is 
not relevant. The size of the maximum coefficient a,,, (Eq. (2)) and the root mean 
square of these coefficients again serve as a measure of the smoothness and the 
variability of the fit. These quantities were quite stable with changes in C, and 
C,-the maximum coefficient suffers changes in the second significant figure for Ci 
and C2 varying between 0.1 and 1.0. Again, the most remarkable feature is the 
stability of II-’ qualitatively observed in printer plots of G, defined in the same 
way as for H above. This supports the conclusion that the choice of the exact form 
of the roughness functional is not critical. While one might conceivably tailor it t; a 
better form than that of Eq. (4), this is not a particularly pressing problem within 
the present methodology. This is simply a result of the dominance of the data and 
of the fact that any repetition vector has a much larger length than the original. 

It is significant that the necessity of determining the inverse of H partially dictates 
the selection of the data points k, and the truncation of the expansion of the star 
functions. Clearly, if any two points are identical-or equivalent-H will be 
singular. Similarly, if the expansion set is not sufficient to distinguish between 
inequivalent data points (.vide supra). H will again be singular. [One could 
presumably obtain solutions by techniques other than those embodied in Eqs. (8) 
but that would involve the use of superfluous data.] Our trial experience with (Q -~- d: 
provided us with concrete examples of both points. It also demonstrated that 
inclusion of the additional (above and beyond N) star functions does indeed 
provide the desired smoothness. For example, the bands along the line connecting 
the center of the upper face (A) of the Brillouin zone to the (011) edge (Lj are 

FIG. 2. Energy bands of alpha uranium as represented by this method. 
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doubly degenerate. When we used 277 star functions with 141 data points, the fitted 
bands oscillated noticeably about one another along this line. Using 505 star 
functions with 149 data points (4 of the additional 8 were on that line), we found 
that we could not distinguish the curve on a line plotter. In the latter case, the 
bands were also noticeably smoother with anti-crossings and band interactions 
clearly discernible. We show this upper plane of the Brillouin zone in Fig. 2. 

Although our initial interest in the present formalism was concerned with 
representing band for density-of-states and Fermi surface studies, the structure of 
Eqs. (8) and (9) suggests another application which may be of greater significance 
than is the interpolation scheme. Note that these equations relate the eigenvalue 
data to the star function expansion coefficients through the transfer matrix T. It is 
very significant that T contains no information about the data; it is determined 
solely by the choice of the roughness functional, tha data point set (the kj), and the 
truncation of the expansion (at M functions). Thus, in carrying out an integration 
over the Brillouin zone, one can choose to expand the integrand in star functions 
and perform the integration (over the various star functions) analytically in much 
the same way that one carries out a Simpson’s integration by expanding in a 
quadratic and integrating. The expansion then yields a set of points and 
appropriate weights for the desired integral. This process need be carried out but 
once for a given crystal structure and should give a very efficient sampling (which 
need not be regular). It should handle structure in the integrand more accurately 
than schemes based on Gaussian quadrature. It can even handle sharp cutoffs if 
they can be included in the integration rather than in the fitting process. 

It is interesting to ask why one gets this clean separation of the data from the 
fitting coefficients when it does not obtain in the least squares procedure. Here, the 
data appears only in the linear constraint part of the variational function Eq. (5) 
with the smoothness requirement appearing in the quadratic component. The least 
squares treatment on the other hand, puts the data in the quadratic part inasmuch 
as it is the square of the deviation of the fit from the data that is being minimized. 
This feature mixes the data with the fitting functions and produces the non- 
separable form. 

The utility of this observation of a resulting integration scheme is best 
emphasized by a significant example. Consider the calculation of the matrix 
elements appearing in a band calculation 

S, = j d3t’@&. (lob) 

Since these equations are for real space. the star functions of Eq. (2) must be the 
real-space counterparts and reflect any nonsymmorphic character of the crystal. 
Otherwise, the formalism can be applied directly to any desired quantity in real 
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space. One must obtain the fully symmetric projection of the integrands in Eq. (10). 
When this is done, one has an expansion of the integrand which can then be 
analytically integrated (yielding only the K= 0 term). Such a technique would be 
quite practical for a pseudopotential where the sharp structure near the nuclei of an 
atomic site has been removed. Such an integration scheme was tested for the 
overlap of LCAO-type lattice sums of Gaussian functions centered on different sites 
(in a cubic lattice) since the result can also easily be obtained analytically. We then 
proceeded to examine the precision of the result as we varied the Gaussian range 
parameter (,and thus the degree of structure in the integrand)> the point set, and the 
choice of smoothness parameters. What we found was that the integration was 
stably quite precise (six digits) under all conditions until one exceeded sensible 
bounds. For example, the error crept into the third significant figure if one’s 
sampling points became as far apart as one of the Gaussian range parameters. The 
failure was quite graceful, however. The one case where the failure was not graceful 
was where the fitting functions did not have the proper symmetry. We simulated 
such a case by using fitting functions with a repetition length twice that of our lat- 
tice In that case, the scheme failed dramatically. The numbers had the correct trend 
with varying k but barely achieved single digit precision. From our rather extensive 
testing of this simple case, we concluded that this integration scheme worics 
extremely well so long as (1) the star functions have the appropriate symmetry, (2) 
the point sampling is sufficiently dense to resolve the integrand (but the failure 
mode is quite graceful), (3) the shortest wavelength (maximum K) must also be 
short enough to resolve the structure but this must be satisfied if the point samphng 
is adequate or the weight generation will not succeed due to the singular matrix. 

The technique cannot be used without modification for an ail electron calculation 
because the sharp structure of the atomic site would demand the inclusion of too 
many star functions and sample points. For an all electron calculation, it is attrac- 
tive to utilize augmentation. Then one draws spheres around each atomic site and 
treats the interior of those spheres numerically in the same way as is currently done 
for the APW or KKR method. The boundary matching problem becomes a second 
quite tractible numerical problem which is not discussed here. Now, the integration 
is to be performed in the incomplete (interstitial) space. 
analytically, it is easily accomplished. The result .is 

3ut, as this is to be done 

I= $ f (S,) T,,,i~(r,)-~wi~(rj). (11) 

where (S,,) is the integral of the star function in the interstitial region. This is a 
quantity well known to practitioners of the APW method. I is the fully sym- 
metric component of the desired integrand. If the fully symmetric part is not easily 
available, then the sampling must include all equivalent points so that it will be 
generated numerically. Again it is to be reiterated that the integration weights do 
not depend on the integrand x but only on the sampling point set used, the 
roughness function chosen, and the number of star functions used. Thus the {r!, cc),] 
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set can be calculated and saved as a database. Finally, note that the basis set in the 
interstitial region need not be plane waves. However, since the manipulation of any 
other basis set in this incomplete space has always required transformation to plane 
waves to perform the requisite interstitial integrations (note the augmented ST0 
.method [S], for example), this numerical procedure offers an effkient and fexible 
alternative to transforming to a linear combination of APWs [6]. We are of the 
opinion that this may well be the most significant result of this exercise. 
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